
snom 4S Proxy
Scripting Interface

snom 4S
SIP Proxy/Registrar

Version 2.39

snom technology AG • 3

snom 4S Registrar Proxy Version 2.39 Scripting

© 2003 snom technology Aktiengesellschaft. All Rights Reserved.

This document is supplied by snom technology AG for information purposes only to licensed
users of the snom 4S registrar proxy and is supplied on an “AS IS” basis, that is, without any
warranties whatsoever, express or implied.
Information in this document is subject to change without notice and does not represent any
commitment on the part of snom technology AG. The software described in this document
is furnished under a license agreement and may be used only in accordance with the terms
of that license agreement. It is against the law to copy or use this software except as
specifically allowed in the license. No part of this document may be reproduced, republished
or retransmitted in any form or by any means whatsoever, whether electronically or
mechanically, including, but not limited to, by way of photocopying, recording, information
recording or through retrieval systems, without the express written permission of snom
technology AG.

Legal Disclaimer

snom offers the software described in this manual for both open source operating systems
as well as licensed operating systems. Whenever software that has been used under GPL
or LGPL licensing conditions has been used by this product you can download the sources
from http://www.snom.com/downlad/gpl/snom_ossdk or purchase a disc from snom for a
nominal fee under the ordering code snom SDK CD.

snom technology AG • 3

Table of Contents

Introduction...7
Scripting Background .. 7
When You Should Consider Scripting ... 8
Loading a script.. 9

Script Structure..11
Comments ... 11
Quotes .. 11
Upper and Lower Case... 12

Statements...13
if .. 13
foreach ... 14
return ... 15

Variables ..17
Names .. 17
Scope ... 17
Types .. 17

Operators ...19
Arithmetic Operators ... 19
Logical Operators.. 19
Comparisons .. 19
Other Operators ... 20
Operator Precedence... 20

Functions ...21
Definition... 21
Calling .. 22

Built-in Functions ...23
String Functions ... 23

4 • Contents

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 5

[S N O M 4 S P R O X Y S C R I P T I N G]

length(string) ...23
substr(string, start, length) ..23
leftstr(string, length), rightstr(string, length) ..23
get_field(string, index, delimiter)...24
match(string, pattern) ..24
ere_match(string, pattern) ..24
parameter_name(pair), parameter_value(pair) ..25
get_time(), get_date(), get_day()..25

Parsing Functions.. 25
parse_url(string) ...25
parse_user(string), parse_host(string), parse_port(string), parse_
scheme(string)...25
parse_name(string) ..26
parse_cparm(string), parse_uparm(string) ...26
parse_header(string) ..26

SIP functions.. 26
create_url(user, host, parameter, header) ...26
create_number(number) ...27
get_header(field1, field2) ..27
conv_enum(name) ...28
in_domain(name) ..28

Registration Related Functions.. 28
known(account)..28
registered(account)...28
resolvable_contact() ..29
register(account) ..29

Proxy Related Functions... 29
proxy_dest(destination, delay) ..29
proxy_user(account, delay) ..29
reject_request(code, additional) ..30
send_ringing(code, additional) ...30
get_contacts() ..31
num_branches() ..31
exec_dialplan(from, to, uri, pattern) ...31

Other Functions.. 31
create_message(from, to, method, event, type, filename, url)31
store_message(account, message) ...32
store_file(name, content) ..32
load_file(name)...32
store_userfile(account, name, content) ..32
load_userfile(account, name)...33

4 • Contents

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 5

[S N O M 4 S P R O X Y S C R I P T I N G]

create_user(account, username, password) ..33
delete_user(account)..33
set_parameter(account, parameter, value)...33
get_parameter(account, parameter) ...33
log(level, message)...34

Callbacks..35
on_request .. 35

Condition for Calling...35
Default Implementation ..36

on_response .. 38
Condition for Calling...38
Default Implementation ..38

on_register .. 39
Condition for Calling...39
Default Implementation ..39

challenge... 40
Condition for Calling...40
Default Implementation ..40

get_user.. 41
Condition for Calling...41
Default Implementation ..41

on_new_user ... 42
Condition for Calling...42
Default Implementation ..42

user_directory.. 43
Condition for Calling...43
Default Implementation ..43

require_billing .. 44
Condition for Calling...44
Default Implementation ..44

on_denial .. 45
Condition for Calling...45
Default Implementation ..45

on_unroutable.. 45
Condition for Calling...45
Default Implementation ..45

on_post... 46
Condition for Calling...46
Default Implementation ..46

6 • Contents

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 7

6 • Contents

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 7

Introduction

Scripting Background

Using the script language of the snom 4S proxy, you can
customize the behaviour beyond the settings which are available on the
web interface.

There have been many proposals for defining the behaviour
of a SIP proxy. Proposals include generic approaches and SIP specific
approaches. Examples are CORBA, CPL, CTI, JAIN, Java Enhanced SIP
(JES), Java Servlet API, JINI, JTAPI, OSA-PARLAY, SIP CGI-BIN, TAPI,
TINA, TOPS, and VoiceXML. Looking at the http server history, we can
learn that simple scripting languages like perl or PHP found a broad
acceptance because of its simplicity, flexibility, stability and performance.
That was our motivation to integrate a PHP-like scripting language, even
if it is not a powerful as PHP4 is today.

Apache offers handling of domains and URLs. While the concept
of domains has been adapted in the proxy, it does not make sense to
define a script for every URL the proxy can handle. Therefore, we decided
to bind the script to the domain only.

The proxy loads a default script during the start process and
defines a number of functions. These functions are used unless overwritten
by domain specific functions. The function overriding is done within the
scope of a domain so that you can specify a completely different behaviour
for different domains. This is helpful if you are operating a number of
separate domains (e.g. as ITSP) or if you want to separate a productive
system from a test system.

The layered architecture is also used for defining variables. Global
variables can be overwritten by domain specific variables in the same way
that functions are overwritten. An additional layer for overriding variables
is the request layer, which exists within the domain context.

1
.

8 • Introduction

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 9

[S N O M 4 S P R O X Y S C R I P T I N G]

When You Should Consider Scripting

In a small office, you usually don’t need to write your own
script. The web interface covers most of the cases found in a typical
environment.

As an operator, we recommend taking a look at scripting. In most
cases, sooner or later your customers will request features that cannot
be set up with the web interface or get too complicated (for example, the
dial plan get very long).

1
.

8 • Introduction

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 9

[S N O M 4 S P R O X Y S C R I P T I N G]

Loading a script

There are two ways to load a script. The first way to do this is to
edit the script right on the scripting web page in the domain administrator
mode. If you press the load button, the script gets directly loaded into the
domain.

The second way is to upload a file into the proxy. To do this, select
the scripting file with the file selection box and push the load button of the
scripting interface.

If you load the script via this interface, you don‘t need to restart
the proxy in order to make this script effective.

To store the currently loaded script, click on the link at the bottom
of the scripting web page. This file will not include the default functions
that might be running in this domain.

1
.

10 • Introduction

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 11

1
.

10 • Introduction

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 11

Script Structure

A script is made up by a list of statements and function
definitions.

The script does not respect line breaks (like some BASIC
implementations do). That means you can insert line breaks and
indentation as you like.

There are two exceptions to this rule. The first are comments and
the second are quoted text.

Comments

As in most other programming languages, you can use comments
to make your code more readable. Comments start with a hash symbol
("#") and go until the end of the line. The proxy removes all comments
during the reading of the script so that there is no performance drawback
by comments.

Quotes

Quoted text begins with the quotation sign ‘"’ and lasts until a
terminating quotation sign is being found.

It is not allowed to use a line break within a quote. All quotations
must be terminated within the same line.

To get a newline character, you can use the "\n" known from C
programming language. "\r" inserts a carriage return. To get a backslash,
use "\\". To get a quote character, use ‘\"’.

To get a number constant, you can omit the quotes around the
number.

2
.

12 • Script Structure

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 13

Upper and Lower Case

The script language is not case sensitive in principle. That means
you can write "IF" or "if". Variable names are also not case sensitive. This
is a major difference to C programming language and other programming
language. Please keep this in mind when writing code.

The case sensitivity of the operator is discussed in the chapter
which explains the operators.

2
.

12 • Script Structure

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 13

Statements

Statements may occur inside or outside of functions and are
executed sequentially. The behaviour resembles the execution of C- or
PHP-code.

if

The if statement is used to execute code depending on conditions.
The syntax for the if-statement is:

if (condition1) { body1 }
else if (condition2) { body2 }
else { body3 }

If the value of the expression1 is "true", the proxy executes
body1 and does not execute body2 or any other body of this if-statement.
It also doe not evaluate and other condition statements. This is important
in cases where the other conditions have side effects.

If condition1 is not "true", the proxy checks the next condition it
finds in an if-else part. The number of if-else parts if unlimited and may
be zero (no if-else part). If there is a match, it executes the body for that
if-else part.

If no match was found and a else part is present, it executes the
body of the else part.

The comparison for conditions is done case-insensitive, so that
"TRUE" also leads to execution of a body.

Note: In contrast to C, the body must be enclosed in brackets ("{"
and "}"), even if you have only one statement inside of the brackets.

Example:
if ($a == "17") {
 log("Found a\n");
}

3
.

14 • Statements

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 15

[S N O M 4 S P R O X Y S C R I P T I N G]

else if ($b == "17") {
 log("Found b\n");
}
else if ($c == "17") {
 log("Found c\n");
}
else {
 log("Not found\n");
}

foreach

The proxy does not support looping like the for in C. This was
done to avoid endless loops. Endless loops are catastrophic for the proxy
as it sill stop service in such a case.

The alternative of looping is going through lists. Lists always have
a defined length and there is no danger that the proxy will end up in an
endless loop.

The foreach command has the following syntax:

foreach(variable, list) { body }

The proxy will assign every element of the list to the provided
variable and execute the body. The scope of the variable of the current
context, that means the value of the variable after the foreach statement
will be the value of the last list element (if there was at least one
list element) or the variable will be unchanged (if there was no list
element).

The list is an expression that is evaluated before the execution of
the foreach statement starts. The result of the execution is interpreted as
string which contains the list elements separated by space.

Example:
foreach($i, "1 2 3 4") { log("This is " . $i . "\n"); }

This example will write the log messages "This is 1\n", "This is
2\n", "This is 3\n" and "This is 4\n" into the log file.

3
.

14 • Statements

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 15

[S N O M 4 S P R O X Y S C R I P T I N G]

return

The return statement has the syntax

return expression;

return leaves the current function and returns as value of the
function the value of the expression. If there is no expression, the return
statement returns the empty string. 3

.

16 • Statements

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 17

3
.

16 • Statements

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 17

Variables

Names

Variable names start with the dollar sign "$" and is followed by
character ‘a’-‘z’, ‘A’-‘Z’ or ‘_’. The next character may also include ‘0’-‘9’.

Examples: $abc (same as $ABC), $a0, $a_0, $_1

Invalid examples: $0, $$, $a#

Scope

The proxy keeps variables in different scopes. This is necessary
to separate domains from requests and allow function arguments.

When a domain is created, it inherits to global variables of the
proxy. If a request within a domain is created, the request object inherits
the variables of the domain.

If a function is called (either within a request context or within
a domain context), the arguments to the function are stored on a call
stack and restored when the function returns. If the variable did not exist
before the call, it is deleted after the function returns. If a variable is
modified or created within a function, it has the context of the underlying
request (if there is such a context) or the context of the domain (if there
is no request).

Types

The proxy scripting language does not support the concept of
type. All variables are simply treated as strings. In the case that an
operator expects a number, it first determines the value of that string,

4
.

18 • Variables

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 19

performs the operation and then converts the result back into a string.
This is also the case for boolean operators as seen in the "if" statement.

There is no length restriction to strings. Short strings are handled
efficiently; strings with a length of more than 64 kB are allocated and
freed from memory on demand. This can significantly slow down the
performance of the proxy and (depending on the memory management
of the operating system) take away resources.

4
.

18 • Variables

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 19

Operators

Arithmetic Operators

Arithmetic operators are +, -, *, /, %. They take the numerical
value of their left and right hand side and perform the appropriate
operation. % performs modulo. All operations are done on integer
numbers, floating point is not supported.

Logical Operators

Logical operators include "&&" (and), "||" (or) and "!" (not).

The "&&" operator evaluates the right hand side only if the left
hand side evaluated to "true". The "||" operator evaluates the right hand
side only if the left hand side evaluated not to "true". This is important
when the expression has a side effect. The "!" operator returns only
"false" when the right hand side was "true".

Comparisons

Comparisons always return the value "true" or "false". The proxy
implements the operators "==", "!=", ">", ">=", "<" and "<=".

The operators "==" and "!=" compare for equality and non-
equality. The comparison is done non-case sensitive.

The relational comparison operators ">", ">=", "<", "<=" first
check if both sides of the comparisons are integer numbers. If this is the
case, they compare the value of the left and right hand side. Otherwise,
they perform a non-case sensitive string comparison of the two sides
(using the "strcmp" C-library function).

5
.

20 • Operators

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 21

Other Operators

The comma operator "," just evaluates both left and right hand
side and return the value of the right hand side.

The dot operator "." concatenates the left string value with the
right hand string value. This is helpful when messages should be created
that contain variables as there is no "printf" function like in the C-library.

Operator Precedence

The following table shows the precedence of the available
operators (operators with the lowest precedence are executed first):

9: ,

8: =

7: ||

6: &&

5: == !=

4: < <= > >=

3: + - .

2: * / %

1: !

5
.

20 • Operators

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 21

Functions

Functions take a number of arguments and return a string value.
You can define functions in the domain script as you wish.

Function names are similar to variables with the difference that
function names do not contain the leading dollar sign. Function names are
like most of the proxy functionality non case-sensitive.

The built-in functions are described later in this document.

Definition

Functions are defines on the top level of a script. That means it’s
not possible to define nested functions (functions within a function).

The syntax for a function definition looks like this:

Func (arg1, arg2, arg3) { body }

The name of the function must be followed by brackets enclosing
a list of arguments (separated by comma). If the list is empty it still needs
the brackets. The arguments must be variable names including the dollar
sign and it is not allowed to use expressions in the argument list.

Tip: By providing arguments that are not initialized when the
function is being called, you can set up local variables for the function.
This trick is known from other scripting languages like gawk.

The sequence in which you define your functions do not matter.
The functions are set up when the script is loaded. When you actually
execute a function, the definition is already available, even if it appears
later in the script.

6
.

22 • Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 23

Calling

Once you have defined your function, you can use it in any
expression. In the simplest case, a statement consists of a single function
call, which looks like a procedure call.

To avoid endless looping when a function calls itself (directly
or indirectly through recursion), the number of nested function calls is
limited. The default value for this limit is 50. If that limit has been reached,
every function just returns an empty string, so that the processing of the
current proxy action stops. In such a case, the proxy will write a log
message. This will allow the operator to find these conditions.

6
.

22 • Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 23

Built-in Functions

String Functions

String functions are helpful to manipulate parts of strings and to
find out if a string contains a certain patterns.

length(string)

To get the length of a string, call length with the string as
argument. The result will be an integer number.

Example: length("1234") will return "4".

substr(string, start, length)

To get a part of a string, you can use the substr function. It takes
two or three arguments.

The first argument is the string that should be used. The second
argument is the position in the string. It refers to the character counted
from the left side of the string starting at position 0. If the third argument
is present, it indicated how many characters should be taken from the
string. If the third argument is absent, the function will return the rest of
the string starting at the position.

Example: substr("abcde", 2, 2) returns "cd", substr("abcde", 2)
returns "cde".

leftstr(string, length), rightstr(string, length)

The leftstr takes two arguments. The first argument is the string
which should be operated on. The second argument indicated how many
characters should be returned.

7
.

24 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 25

[S N O M 4 S P R O X Y S C R I P T I N G]

In the case of leftstr, the function returns the string starting from
the left side, in the case of rightstr starting from the right side.

get_field(string, index, delimiter)

The get_field function extracts a field from a string. It takes three
arguments. The first argument contains the string from which the field
should be extracted. The second argument indicates the field number,
starting at 0. The third argument is optional and indicates the field
separator characters, which default to white space.

Examples: get_field("a b c", 1) returns "b", get_field("a b, c d",
1, ",") returns " c d".

match(string, pattern)

match is used for pattern matching. The first argument is the
underlying string, the second argument the pattern. If there is a match,
the function returns "true".

The "?" matches any character, "$" matches only digits. "*"
matches any number of characters, "%" any number of digits. "~"
matches the name of the domain (if the script is evaluated in domain
context). "[a-z]" matches a character range. See the description for the
dial plan of the proxy for details.

ere_match(string, pattern)

ere_match is also used for pattern matching. In contrast to
match, it uses the "extended regular expression" matching known from
NAPTR DNS resolution. However, it can also be helpful in other cases
when pattern need to be replaced (that was the reason why it was chosen
in NAPTR). For more information, refer to RFC 2915.

ere_match take as parameters the input string and the extended
regular expression with replacement (separated by any separator symbol
as described in RFC2915).

Example: ere_match("urn:cid:39CB83F7.A8450130@fake.gatec
h.edu", "/urn:cid:.+@([^\\.]+\\.)(.*)$/\\2/i") will return "gatech.edu".

7
.

24 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 25

[S N O M 4 S P R O X Y S C R I P T I N G]

parameter_name(pair), parameter_value(pair)

These functions retrieve the name and the value of the parameter
value provided as argument. These functions are helpful when URL or
contact parameters must be checked.

Example: parameter_name("bla=123") returns "bla", parameter_
value("bla=123") returns "123".

get_time(), get_date(), get_day()

These functions return the current time, the current date or the
current day. All date related information are relative to GMT.

The get_time function returns a string in HH:MM format, for
example 14:54. The get_date function returns the current date in M.D.Y
format, for example 5.28.2003. The get_day function returns the day of
the week in English three letter format, e.g. Sun.

Parsing Functions

The paring functions give you easy access to URL components
and to parameters and names.

parse_url(string)

This function extracts the URL of a string.

Example: parse_url("Fred Feuerstein <sip:ff@stoneage.org;pa
rm=123>") returns "sip:ff@stoneage.org;parm=123", parse_url("sip:
ff@stoneage.org;parm=123") returns "sip:ff@stoneage.org".

parse_user(string), parse_host(string), parse_
port(string), parse_scheme(string)

These functions extract parts of the URL. If the URL is enclosed
in "<" and ">" and part of a display-name representation, the pure URL is
retrieved first. See the specification in RFC3261 for details on URL.

Example: parse_user("<sip:abc@stoneage.org>") returns "abc",
parse_user("sip:host:5068") returns "", parse_scheme("tel:1234")

7
.

26 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 27

[S N O M 4 S P R O X Y S C R I P T I N G]

returns "tel", parse_port("sip:abc@stoneage.org") returns "",parse_
port("sip:abc@stoneage.org:5052") returns "5052", parse_host("sip:
abc@stoneage.org:5061") returns "stoneage.org".

parse_name(string)

This function extracts the display-name.

Examples: parse_name("Fred \\\"F.\\\" Feuerstein <sip:
ff@stoneage.org>" returns "Fred \"F.\" Feuerstein".

parse_cparm(string), parse_uparm(string)

This function extracts the contact parameters (parse_cparm) or
the URL parameters (parse_uparm) of a string.

The contact parameters are not part of the URL and are only
present if the url is protected by the "<" and ">" symbols. If these symbols
are not present, the parameters are assumed to be part of the URL.

The result is a list of space-separated elements representing the
parameters.

Example: parse_cparm("F Feuer <sip:ff@bla.com>;tag=123;par
m=456") returns "tag=123 parm=456".

parse_header(string)

This function extracts the contact header arguments of a string.
The header arguments are behind the "?" and separated by "&" characters
(see http URL). The result is also a list of space separated elements.

Example: parse_header ("sip:ff@bla.com?p1=1&p2=2") returns
"p1=1 p2=2".

SIP functions

create_url(user, host, parameter, header)

create_url is a helper function that creates a URL from its
arguments. It takes four arguments. The first argument it the user

7
.

26 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 27

[S N O M 4 S P R O X Y S C R I P T I N G]

name. If the URL should not contain a user name, this argument may
be left empty. The second argument contains the hostname and the
port, separated by a colon. If the port should be empty, the port may be
omitted and the colon is not necessary. If this argument is left blank, it is
replaced with the current domain name.

The third argument contains the list of parameters, each separated
by space. The fourth argument contains a list of header parameters, also
separated by space.

The create_url function always creates a sip URL.

Example: create_url("123", "domain.com:5062", "transport=udp
line=1") returns "sip:123@domain.com:5062;transport=udp;line=1".

create_number(number)

Users are sometimes a little bit sloppy entering SIP URL.
For example, they expect that a simple username without domain
automatically gets converted into a complete URL. This function takes
one argument that is converted into a complete URL.

If the argument is already a complete URL, this argument is
returned. If the argument does not contain a "@" symbol, this function
converts the argument into a URL that has the user part set to the
argument and the domain to the current domain. Otherwise, it merely
completes the URL with the sip scheme and returns that URL.

Examples (in the domain "domain.com"): create_number("sip:
bla@abc.com") returns "sip:bla@abc.com"), create_number("123")
returns "sip:123@domain.com" and create_number("123@ff.com")
returns "sip:123@ff.com".

get_header(field1, field2)

get_field retrieves a SIP message header of the request of the
current open request. This function is helpful when the script needs
information directly from the SIP request. Examples include User-Agent
or proprietary information.

The function takes one or two arguments. The first name is the
normal name of the header, the optional second argument is the short
name of the header.

7
.

28 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 29

[S N O M 4 S P R O X Y S C R I P T I N G]

Example: get_header ("From", "f") returns "Fred Feuerstein
<ff@stoneage.org>;tag=123456".

conv_enum(name)

RFC2916 defines an algorithm that translates a telephone
number in the tel URL style into a DNS name. conv_enum executes that
algorithm. It takes the number as first argument (without the resource
identifier) and optionally the domain which is being searched. This option
defaults to "e164.arpa".

Example: conv_enum("+49-30-39833-0") returns "0.3.3.8.9.3.0
.3.9.4.e164.arpa".

in_domain(name)

Sometimes it is important to know if a URL belongs to the domain
where a request is being processed in (for example, to check if the source
also belongs to the domain). For this purpose, the function in_domain
takes as argument a URL or a contact (as from the From-header) and
returns true if that URL or contact belongs to the current domain.

Registration Related Functions

known(account)

The function known determines if the account name provided as
argument has an assigned username. This is the case if the account has
been set up on the proxy. It is not necessary that the password is set.

Example: known("1234") returns "true"

registered(account)

The function registered is similar to the known function. However,
in this case the proxy checks if at least one registration exists for the
provided account name. That means that it will be possible to proxy a
request to this user.

Example: registered("1234") returns "false"

7
.

28 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 29

[S N O M 4 S P R O X Y S C R I P T I N G]

resolvable_contact()

The function resolvable_contact does not take any parameters.

It simply checks if the top Via header of the received request
matches the IP address where the request came from. Typically, if a client
is behind NAT, this is not the case. If the proxy itself is operating on a NAT
address, this function always returns true.

The proxy does not perform DNS resolution to check if an address
is a private address. The primary goal with this function is to avoid stupid
registration attempts from behind NAT so that customers receive a notice
when their network is not setup correctly for handling NAT.

register(account)

The function register takes as parameter an account name. It
registers the contacts provided in the current request with the current
account and sends a success response back to the user agent client.

See the explanations on registrations on details on Path and
registration duration limitation.

Proxy Related Functions

proxy_dest(destination, delay)

This is one of the core functions of the proxy. It forks the current
request to the location provided as the first argument. If present and the
request is an INVITE request, the second argument delays the fork. The
delay is measures in seconds.

Forking to a destination can be done without a domain context.

proxy_user(account, delay)

The proxy_user uses the database of registered users for
determining the destination of the forking process. The user account is
provided as first argument.

7
.

30 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 31

[S N O M 4 S P R O X Y S C R I P T I N G]

As with proxy_dest, the second argument delays the forking
process. However, the delay is combined with the registration probability,
so that users with a probability will receive the request immediately; users
with a probability of zero will receive the request after the delay. Users
having a probability between these extremes will receive the request with
a delay that scales linear between the extremes (sequential forking). If
you use a negative delay value, the proxy does not use the probability
value of the registration and instead initiates the request exactly after the
absolute value of the delay.

If no user is registered with this account, this function sends a
404 response to the request. If there are no other requests forked, this
will be the end result of the request.

reject_request(code, additional)

Sometimes it is helpful to explicitly add a reject code to a
request. For instance, when a user cannot be found, the proxy might
want to signal "404 Not Found". The reject_request takes as argument
the reject code. The optional second argument may contain additional
headers that are inserted into the response. The additional parameters
must be terminated with a CRLF pair.

Example: reject_request("404 Not Found", "Error-Information:
<sip:notfound@media.company.com>\r\n")

send_ringing(code, additional)

send_ringing is similar to reject_request and it is called in the
same way. Instead of adding a final response to the open request, it
immediately sends out a provisional response on behalf of the proxy. This
is helpful when the calling party should have the impression that the other
side is ringing. This command makes especially sense when used during
redirection with a 181 response code.

The send_ringing command may also include additional headers
like the reject_request command.

7
.

30 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 31

[S N O M 4 S P R O X Y S C R I P T I N G]

get_contacts()

The get_contacts function returns a list (separated by spaces)
containing the Contact URL of the current response. This is helpful when
the proxy should take care about redirecting calls in early media state.

num_branches()

This function returns the number of branches open on the current
request. This is helpful in situations when the proxy needs to know if a
request is pending to a request.

For example, when you try different low cost gateways to
terminate a call, you want to redirect the call to a expensive gateway only
if all of the low cost gateways did not pick up the call.

exec_dialplan(from, to, uri, pattern)

The exec_dialplan function exists to simplify the usage of the
web-based dial plan. Normally, when programming scripts for the proxy,
this function is not needed. However, in some cases it may be easier and
more convenient to use the dial plan in addition to the script language.

The exec_dialplan function takes four arguments. The first
argument is the actual destination part, the second argument the actual
pattern part and the third argument the actual URI of the request. The
fourth argument is the dial plan in the format generated by the web
interface.

Normally, the proxy calls the function like this: exec_
dialplan(parse_url($from), parse_url($to), $request_uri, $allow_
pattern).

Other Functions

create_message(from, to, method, event, type,
filename, url)

The create_message function generates a request string that can
be stored in the store-and-forward buffer of a user account. This function

7
.

32 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 33

[S N O M 4 S P R O X Y S C R I P T I N G]

is helpful for generating welcomes messages and other information
messages.

The function takes seven arguments. The first argument identifies
the From-Header, the second the To-Header of the request. Argument
number three indicates the method (typically "MESSAGE" or "NOTIFY"),
the fourth argument the event type of the request (this argument can
be left empty in some cases). The argument number five indicates
the Content-Type of the request. The sixth argument indicates the file
that contains the actual attachment, the seventh argument indicates
the request_uri. This uri can be left blank in most cases as it will be
overwritten by the sending procedure.

store_message(account, message)

To put a message into the store-and-forward buffer of an account,
you may use the store_message function.

It takes as arguments the account and the message string, which
is typically generated by the create_message function.

store_file(name, content)

This function writes the content into the file with the filename
"name". The filename is relative to the current working directory. Absolute
filenames and filenames using the ".." are not allowed. This is to avoid
accidental writing into other domains files.

load_file(name)

This function returns the content of the file with the filename
"name". The filename is relative to the current working directory. Absolute
filenames and filenames using the ".." are not allowed. This is to avoid
peeking into other domains files.

store_userfile(account, name, content)

This function writes the content into the file with the filename
"name". The filename is relative to the directory of the account. Absolute
filenames and filenames using the ".." are not allowed.

7
.

32 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 33

[S N O M 4 S P R O X Y S C R I P T I N G]

load_userfile(account, name)

This function returns the content of the file with the filename
"name". The filename is relative to the directory of the account. Absolute
filenames and filenames using the ".." are not allowed.

create_user(account, username, password)

The proxy does not create a user by default; it needs an explicit
call to do so. The create_user takes as argument the name of the account
which will contain the user, the name for challenging and the password.
Both the name and the account must be provided, the password is
optional.

delete_user(account)

This function deletes a account as if it has been removed from
the web interface.

set_parameter(account, parameter, value)

Accounts may have parameters that are stored permanently. The
set_parameter takes three arguments. The first argument is the name of
the account, the second parameter the name of the variable and the third
parameter the value that should be assigned to the variable.

The names "user" (user name), "pass" (password), "single"
(single registration) have a special meaning and overwrite their predefined
value. The name "domain" is reserved and cannot be overwritten.

Example: set_parameter($user, "trial_calls", 3);

get_parameter(account, parameter)

To read out a setting the get_parameter function may be used. It
reads out both the predefined variables as well as the custom variables.

Example: if (get_parameter($user, "trial_calls") > 1) { ... }
7

.

34 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 35

log(level, message)

Log explicitly writes a message into the log file. It takes an
unlimited number of arguments, but it must have at least two arguments.
The first argument is evaluated to the log level. The other arguments are
concatenated and printed to the log file if the log level is high enough.

Example: log(5, "This is a log\n")

7
.

34 • Built-in Functions

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 35

Callbacks

The proxy scripting is primary determined by overriding the
default implementation of callbacks.

Callbacks run either under a domain context or under a request
context. Requests have their own scope, that means variables created
in this scope remain inside the request and do not affect the domain
variables. The following requests run under domain context: on_post,
user_directory and on_new_user. All other are executed under request
context.

on_request

Condition for Calling

Whenever the proxy receives a new request, it sets up an object
representing that request and the associated responses, timeouts etc.

The request object has its own scope with variables. This objects
receives a copy of the variables of the domain context where the request
in being processed in. Additionally, some request specific variables are
set: $method is set to the method of the request (e.g. INVITE, NOTIFY,
etc.), $request_uri is set to the request URI of the request (this is the
word after the method), $from is set to the value of the From header,
including display-name and tags, $to is set to the value of the To header,
similar to the $from variable.

After the variables have been copied, the proxy calls the on_
request function without any arguments.

8
.

36 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 37

[S N O M 4 S P R O X Y S C R I P T I N G]

Default Implementation

The default implementation of the on_request function
implements the behaviour describes in the web based configuration.

First of all, the script checks if a ENUM number is being called. If
this is the case, the proxy just forwards the call. The transport mechanism
will take care about the tel-url to ENUM conversion and the resolution of
the SIP URL for the telephone number.

If the scheme is not a tel URL, the proxy checks if the request is
a message to a user which is offline. In this case, it stores the message in
the user account for later delivery. Otherwise it determines the user which
is being called by looking at the request_uri. If that user is registered with
the proxy, it forks the request to that user using the sequential forking
delay. Otherwise, it calls the exec_dialplan function that takes care about
the dial plan. In case the dial plan does not generate an error message,
the proxy takes the 404 Not Found stored as default answer.
on_request() {
 if (in_domain($from) && get_parameter($account, “disabled”)) {
 # someone disabled this account
 reject_request(“404 Account Disabled”); # default
 }
 else if (parse_scheme($request_uri) == “tel”) {
 # convert the telephone number into an enum suffix
 proxy_dest($request_uri);
 }
 else {
 $user = parse_user($request_uri);
 if (known($user)) {
 if ($method == “INVITE”) {
 # check mailbox:
 $mb_target = get_parameter($user, “mb_target”);
 $mb_timeout = get_parameter($user, “mb_timeout”);
 $red_location = get_parameter($user, “red_location”);
 if ($mb_timeout == “”) { $mb_timeout = 20; } # 20 s is
default
 if ($red_location == “offline” || !registered($user)) { $mb_
timeout = 0; }
 if ($mb_target != “”) {
 if (registered($mb_target)) {
 proxy_user($mb_target, -$mb_timeout);
 }
 else {
 proxy_dest(create_number($mb_target), $mb_timeout);

8
.

36 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 37

[S N O M 4 S P R O X Y S C R I P T I N G]

 }
 }

 # check redirection:
 if ($red_location == “offline”) {
 # no further redirections, mailbox already included
 }
 else if ($red_location == “home”) {
 $red_target = get_parameter($user, “red_target”);
 if ($red_target != “”) {
 proxy_dest(create_number($red_target));
 }
 }
 else if ($red_location == “road”) {
 $red_road = get_parameter($user, “red_road”);
 if ($red_road != “”) {
 proxy_dest(create_number($red_road));
 }
 }
 else { # Office, default
 # default action
 if (registered($user)) {
 proxy_user($user, $seqfork_delay);
 }
 else {
 reject_request(“404 Not Registered”); # mb and red will
override this
 }
 }
 } # method == INVITE
 else if ($method == “MESSAGE” && !registered($user)) {
 # store & forward:
 store_message($user);
 reject_request(“200 Message Delivered”); # default
 }
 else {
 # default action
 if (registered($user)) {
 proxy_user($user, $seqfork_delay);
 }
 else {
 reject_request(“404 Not Registered”);
 }
 } # other methods
 } # known user
 else {

8
.

38 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 39

[S N O M 4 S P R O X Y S C R I P T I N G]
8

.
 # no for a known user:
 reject_request(“404 Not Found”); # default
 exec_dialplan(parse_url($from), $request_uri, $request_uri,
$allow_pattern);
 }
 }
}

on_response

Condition for Calling

When a response is received by the proxy, it matches this
response to an open request.

The proxy automatically determines the best response to a
request. The function on_response does not need take care about this.
The response is sent only of all call legs returned an error code or one of
the call legs returned a success code.

The return code indicates weather the proxy should consider the
response as an answer to the original request.

Default Implementation

The default implementation takes care about the redirection codes
300-399. The proxy initiates the sending of a 181 provisional response
and then forks a new request for each of the contacts given in the redirect
response. In this case, the response is not taken as a response code to
the request.
on_response() {
 # handle redirect codes
 if ($code >= 300 && $code < 400) {
 send_ringing("181 Call Being Forwarded");
 foreach($dest, get_contacts()) {
 proxy_dest($dest);
 }
 return false;
 }
 else {
 return true; # this is a valid response
 }

38 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 39

[S N O M 4 S P R O X Y S C R I P T I N G]

}

on_register

Condition for Calling

When the proxy receives a REGISTER request, it would normally
call on_request as the REGISTER is also a request. However, because
normally REGISTER requests must be treated differently that other
requests, the proxy calls the more special function on_request.

Normally, the function would check if the user exists in the
database and then selectively register that user. However, on_request
is called after the authorization checking, which is done in the challenge
callback.

Default Implementation

The default implementation checks if the contact can be resolved
or if that feature has been turned off. If the contact is accepted but the
user account does not exist, the user account is created (which may trigger
the on_new_user function). Otherwise, if the contact is not accepted, the
request is rejected with a message that the contact is not ok.
on_register($user) {
 if (!$reject_nat_register || resolvable_contact()) {
 if (!known($user)) {
 log(2, “Create user “ . $user . “ without password\n”);
 create_user($user, $user);
 }
 # if (!get_parameter($user, “disabled”))
 register($user);
 }
 else {
 reject_request(“406 Bad Contact (NAT)”);
 }
}

8
.

40 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 41

[S N O M 4 S P R O X Y S C R I P T I N G]

challenge

Condition for Calling

Challenging is a process in SIP which asks the user agent client
to answer a question that can only be answered if the user agent has a
secret password. The password is not transmitted and from the answer it
is practically impossible to guess the password.

This challenging is used to protect destinations and authorize
registrations in the standard web interface settings. However, you can
also implement your own policy by overwriting the function challenge.

When a request arrives at the proxy, the proxy checks if the
request contains credentials from a recently generated question (nonce).
If that is the case the proxy will process the requests without further
authorization checking.

If this is not the case, it calls the function "challenge" and if that
function returns "true" it generates a new nonce and rejects the request
with the code 407 (Proxy Authorization Required). If the user agent has
the matching password, it will send another request which matches the
generated response and then the request will be processed.

Default Implementation

The default implementation differentiates between REGISTER
and other methods, just like the web interface does it.

For REGISTER requests, it asks for credentials only of general
authorization has been turned on or the user us known.

For other requests, it goes through the list of protected
destinations and checks if the pattern matches the request URI.
challenge() {
 if ($method == "REGISTER") {
 if ($force_authorization || known(parse_user($from))) { return
true; }
 }
 else {
 foreach($i, $auth_exception) {
 if (match($i, $request_uri)) { return true; }
 }

8
.

40 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 41

[S N O M 4 S P R O X Y S C R I P T I N G]

 }
 return false; #default
}

get_user

Condition for Calling

To be able to check the answer from a challenge, the proxy must
determine which user account was used. In order to do this, the proxy
calls the function get_user.

Most of the time, the user part of the URL in the From header will
identify the user. However, you might want to specify another policy or
add special cases (e.g. for gateways).

If the get_user function returns an empty string, the proxy will
look for the user parameter in the challenge response. In this case the
user agent may decide which account it uses to answer the question.

Default Implementation

The default implementation retrieves the user part of the URL in
the From header.
get_user() {
 if (in_domain($from)) {
 return parse_user($from);
 }
 else {
 return;
 }
}

8
.

42 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 43

[S N O M 4 S P R O X Y S C R I P T I N G]

on_new_user

Condition for Calling

When a new user is created via the web interface or through
explicit command in the scripting interface, the proxy calls a function
"on_new_user". The function receives the user accounts as argument.

This function can be used nicely for welcome messages or other
actions that need to be done during the set up of a user account. Examples
include setting up of mailbox accounts, initializing billing parameters and
so on.

The function does not have any influence on the fact that the new
user account is being set up.

Default Implementation

The default implementation first checks if the settings for welcome
messages are sufficient to generate a welcome message. It is assumed
that this is the case if a welcome file has been specified and the method
is either MESSAGE or an event type has been specified. An event type is
always necessary when the NOTIFY message type has been selected.

Because the message type is set to "plain/text" by default,
the user just has to specify the file name to trigger sending welcome
messages.

If the default implementation determines that the message can
be sent, it creates a new message with the parameters set up by the web
interface and puts that message into the store and forward offer of the
respective account.
on_new_user($user) {
 if ($welcome_file != "" &&
 ($welcome_event != "" || $welcome_method == "MESSAGE") &&
 $welcome_type != "") {
 store_message($user, create_message(create_url(), # From
 create_url($user), # To
 $welcome_method, # method
 $welcome_event, # event
 $welcome_type, # type
 $welcome_file)); # file
 }

8
.

42 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 43

[S N O M 4 S P R O X Y S C R I P T I N G]

}

user_directory

Condition for Calling

For a large number of registered users it is important to have a
hash function that puts the respective user into a bin. This way the proxy
can set up a layered file system structure where the hash results may
serve as first tier index for finding the user account.

For example, by using hash function returning thousand bins it
would be possible to set up approximately one million users without having
to bother about performance of the file system. If every registration
takes approximately 4 KB, registering 1 million users would require 40 GB
storage, which can be easily set up with a normal PC.

For instance, if the hash function would return the first digit of a
telephone number, the proxy with set up ten subdirectories each of them
containing the telephone numbers starting with the first digit. That would
increase the performance of the proxy almost by a factor ten already.

However, practically it is usually not so easy to find such a simple
hash function. In cases where most of the users start for example with
the number 2, that hash function would not be effective at all. Therefore,
the proxy allows defining a customized hash function.

Good hash functions could be taking the last digit or the last
two digits of the user accounts if they are equally distributed. More
sophisticated-functions like a MD5 or check sum can be used in cases
where an equally distributed hash function cannot be found easily.

Default Implementation

The default implementation returns the first character of the user
name. This gives the proxy at least a minimum level of hierarchy.
user_directory($user) {
 return leftstr($user, 1);
}

8
.

44 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 45

[S N O M 4 S P R O X Y S C R I P T I N G]

require_billing

Condition for Calling

Before the proxy starts billing a request with RADIUS, it calls the
require_billing function. This is necessary because RADIUS assumes that
before a call can start the RADIUS server from its access. If the function
returns the value "true" and the radius parameters have been set up, the
proxy will first initiate a RADIUS admission request before it starts forking
requests by calling the on_request function.

If RADIUS admission request is being denied, the proxy will call a
function on_denial. This function then can inform the user that the trend
is not sufficient by returning an appropriate response.

Practically, not all requests require billing. Depending on the policy
of the operator, instant messages might be delivered without any billing,
while initial INVITE requests may only be forwarded if the respective user
account has positive credit. It also depends on the policy of the operator
if for instance presence messages are subject to billing. It is very hard to
predict in beforehand which packets require_billing and which not. That is
the reason why the proxy calls the require billing function to determine if
it should do billing or not.

Requests which already contain a route are never subject to
billing. These requests are usually part of an ongoing call which did not
need any further billing checks. This approach does not introduce new
security problems, because if user agents is able to preset a route without
previous proxy interaction, but will also be able to bypass the proxy at
all.

Default Implementation

The default implementation merely checks if the request is an
INVITE request and if this is the case returns true. All other requests are
assumed not to require billing.
require_billing() {
 return $method == "INVITE";
}

8
.

44 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 45

[S N O M 4 S P R O X Y S C R I P T I N G]

on_denial

Condition for Calling

When the RADIUS admission request has been denied, the proxy
calls the on_denial function. This function will usually generate an error
response explaining that the credit on the billing server has expired. It
may also include additional information like error information that will
make the user agents call the media server, which will explain what
happened.

Default Implementation

The default implementation merely returns in an error code "403
Forbidden".
on_denial() {
 reject_request("403 Request Denied");
}

on_unroutable

Condition for Calling

When a SIP URL cannot be resolved via DNS, the proxy calls
this callback. This includes DNS NAPTR, DNS SRV, DNS A and ENUM
searches.

Default Implementation

The default implementation merely returns in an error code "404
Not Found".
on_unroutable() {
 reject_request("404 Not Found");
}

8
.

46 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 47

[S N O M 4 S P R O X Y S C R I P T I N G]

on_post

Condition for Calling

In many cases, operators want to control the proxy automatically.
The web interface was designed for user interaction and the session-key
management complicates the automatic access to the proxy. Because of
this, the proxy supports an automatic access method.

To ensure basic security and identify the, domain, two arguments
are mandatory: domain must be set to the domain name and pass t the
password for that domain. All other arguments are passed as variables to
the on_post function. The page name is hard coded to "post.htm".

The proxy will return a short html message that embeds the
return string of the on_post function. This is to indicate a web interface
user that this page is normally not available. But you can see the return
code embedded in the answer between the H1 tags.

To address the interface, you may use the program "curl" or even
directly connect to the http TCP port and request the URL. For example:
curl "http://url.org/post.htm?domain=abc.de&pass=abc&action=create_u
ser&username=theo&password=secret&account=theo"

(please note the quotes around the URL that avoid the shell from
forking several commands) will return:
<HTML><HEAD>
<TITLE>snom proxy: Error</TITLE>
</HEAD><BODY>
<H1>Ok</H1>
Please ask your system administrator to check the log file.<P>
</BODY></HTML>

Default Implementation

The default implementation checks for the action variable and
allows four basic functions: creating, deleting, disabling and enabling an
account. From the reading above, the code should be self-explanatory.
on_post() {
 if ($action == "create_user" && $account != "" && $username != "")
{
 create_user($account, $username, $password);
 return "Ok";

8
.

46 • Call-backs

[S N O M 4 S P R O X Y S C R I P T I N G]

snom technology AG • 47

[S N O M 4 S P R O X Y S C R I P T I N G]

 }
 else if ($action == "delete_user" && $account != "") {
 delete_user($account);
 return "Ok";
 }
 else if ($action == "disable_user" && $account != "") {
 set_parameter($account, "disabled", "true");
 return "Ok";
 }
 else if ($action == "enable_user" && $account != "") {
 set_parameter($account, "disabled", "false");
 return "Ok";
 }
 else {
 return "Unhandled Request";
 }
}

8
.

Europe & ROW:

snom technology Aktiengesellschaft
Pascalstr. 10B, 10587 Berlin, Germany

Phone: +49 (30) 39833-0
mailto:info@snom.de
http://www.snom.com

sip:info@snom.com

India and SAARC:

snom technology (India) Pvt Ltd.
No. 417, International Trade Tower

Nehru Place, New Delhi-110019
Phone: +91 11 26234097
Fax: +91 11 26234079

http://www.snomindia.com
mailto:info@snomindia.com

sip:india@snom.com

© 2003 snom technology AG
All rights reserved.

USA and Americas:

snom USA Representation
ABP International, Inc.

1203 Crestside Dr.
Coppell, Texas 75019, USA
Phone: +1-972-831-0280

sip:usa@snom.com
mailto:usa@snom.de

